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MAXIMUM WORK OF RELAXING SYSTEMS
RECOVERABLE IN A FINITE TIME

A. I. Shnip UDC 536.7

The problem on minimization of the thermodynamic action performed by a linear relaxing thermodynamic sys-
tem from an arbitrary nonequilibrium state on a finite time interval has been solved. In specific applications,
this problem solves that on the maximum mechanical or electric energy (work) which can be recovered in a
finite time interval from such systems as a viscoelastic body, electric RC and LC circuits, an ideal gas with
relaxation, and others in an arbitrary nonequilibrium initial state.

A new trend in nonequilibrium thermodynamics (called "thermodynamics at a finite time") has begun to in-
tensely develop since the mid-1970s [1–3]. This trend, which appeared at the interface of the thermodynamics of irre-
versible processes and the theory of optimum control, considers thermodynamic systems consisting of individual
subsystems which can be assumed to be equilibrium but out of equilibrium with each other. This approach can be in-
terpreted as that based on a certain discrete principle of local equilibrium, which is similar to the continuum principle
used in the thermodynamics of equilibrium processes. Such systems can be described in the language of standard ther-
modynamics and one can formulate classical thermodynamic problems on the maximum efficiency of heat engines in
cycles occurring in a finite time in a rigorous statement for them. Such problems are reduced to the typical problems
of optimum control; their solution has led to interesting results providing a more realistic evaluation of the efficiency
of the existing heat engines. Composite systems possess relaxation properties, since the system of equations that de-
scribes their interaction is relaxation-type.

Such systems are similar in many properties to the relaxing thermodynamic systems considered in [4, 5]. The
latter can equivalently be presented as systems with internal state variables for which the constitutive equation of gen-
eralized forces is dependent on the running value of the configuration of the system and the vector of internal state
variables whose evolution is described by supplementary relaxation equations [4, 11]. The equivalence conditions and
the procedure of mutual identification of the parameters of two corresponding systems of both types are constructed
based on the well-known theory of realization of dynamic systems [6, 7]. There can be an analogy with systems con-
sidered in the thermodynamics with a finite time, since each internal degree of freedom (associated with an individual
internal variable) for thermodynamic systems with internal state variables can be interpreted as an individual subsystem
whose interaction with the remaining subsystems and the "thermostat" is described by relaxation equations. Thermody-
namic action for the systems in question in specific applications is the integral of work or reduced heat; therefore, an
analog of finite-time thermodynamic problems in our case will be those of optimization (minimization) of the thermo-
dynamic action performed from a certain nonequilibrium state on a finite time interval. Below, we consider such a
problem in terms of generalized variables (configuration, generalized force, and thermodynamic action). Examples of
how this formalism can describe physical systems have been given in [5].

Preliminary Data from the Theory of Generalized Thermodynamic Systems with a Memory. Let S be a
finite-dimensional Euclidean space of the elements α, β, and γ with a scalar product s.,.t and a norm ⋅ = s.,.t1 ⁄ 2

(this space will be called a configuration space) and R and R+ be the sets of real and real nonnegative numbers.
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The time function ε: R → S, called the configuration trajectory of a system, is a continuous function bounded
on each interval and with a derivative bounded on finite intervals; for this function there exists t0 such that ε(t) = ε0
for all t ≤ t0 (ε0 is a fixed element from S).

The configuration history of the system to the instant of time t is a function determined as follows:

εt
 (s) = ε (t − s) . (1)

A differential configuration history to the instant of time t will be called the function ε
. t: R+ → S

ε
. t

 (s) = 
d
dt

 εt
 (s) = − 

d
ds

 ε (t − s) . (2)

The Hilbert space H of specific piecewise-continuous functions f: R+ → S with a compact support and a fi-
nite norm

NfN = 






∫ 
0

∞

f (s)2
 γ (s) ds








1 ⁄ 2

(3)

will be called the space history,  where γ(s) is the positive monotonically decreasing influence function inte-
grable on R+.

The state Λ is a pair Λ = 


α, f


, where α 2 S and f 2 H, and the set of all these pairs with a norm N⋅NG,

NΛNG = (α2
 + NfN

2)1
 ⁄ 2 , (4)

forms the state space G.
For a prescribed configuration trajectory ε(⋅) and an arbitrary instant of time t, the system’s state at the instant

t is determined as

Λt
 = 



ε (t), ε

. t

 . (5)

The constitutive equations correspond to the notion of a constitutive functional of generalized forces σ^ :
G → S:

σ^  (Λ) = σ^  (α, f ) . (6)

The functional σ^  is assumed to be continuous on G and bounded for any bounded values of the arguments.
For each configuration trajectory of the system we can uniquely determine, using the functional (6), the tra-

jectory of generalized forces σε: R → S:

σε (t) = σ^  (Λt) = σ^ (ε (t), ε
. t) . (7)

A process of duration T(T > 0) is the bounded and piecewise-continuous function h: (0, T] → S with which
the transformation Ph

T: G → G in the state space is associated; this transformation is determined as follows: for each
Λ = 



α, f


 2 G, we have

Ph
TΛ B Λ(h) = 




α(h), ph

T
f



 , (8)

where

α(h) = α + h
i
 (T) ;   hi

 (t) = ∫ 
0

t

h (s) ds , (9)

1048



the transformation ph
T in the history space is determined as

ph
T
f (s) = 











f (s − T) ,     s 2 [T, ∞) ;

h (T − s) ,     s 2 [0, T) ,
(10)

and Ph
T is called the transformation of states associated with the process h. The process h is said to transfer the system

from the initial state Λ to the final state Ph
TΛ.

The action (or thermodynamic action) performed by the process h of duration T from the state Λ is deter-
mined as the function a: G × P → R prescribed as follows:

a (Λ, h) B a (α, f, h) = ∫ 
0

T

sσ^  (Ph
tΛ), h (t)t dt , (11)

where Ph
t  is the transformation associated with the reduction of the process h by the interval (0, t).
The postulate expressing the second law of thermodynamics in the sense of Coleman and Owen [13] is for-

mulated as follows:
In any initial state Λ 2 G, the action a possesses the following property: for any ξ > 0 there exists δ > 0 such

that, if h 2 P and

NΛ − Ph
TΛNs < δ , (12)

we have

a (Λ, h) > − ξ . (13)

In other words, this postulate means that if a certain process transfers the system to a fairly small vicinity of
the initial state, the action performed in this process will be nonnegative with a degree of accuracy as high as is
wished. This statement is a generalization and a rigorous mathematical formalization of the formulation (used in clas-
sical thermodynamics) of the second law in the form of the requirement that the integral of the reduced heat be non-
negative in any cyclic process.

In [5], for the functionals (6) of the partial form

σ^  (α, f ) = σ0 (α) + σ^  ′ (f ) (14)

it has been proved that for the postulate formulated above to hold true it is necessary and sufficient that a continu-
ously differentiable state function Ψ0: S → R exists such that

σ0 (α) = ∂αψ0 (α) , (15)

and the functional σ^ ′ satisfies the following inequality:

∫ 
0

T

sσ^  ′ (Ph
t
0
+), h (t)t dt ≥ 0 ,   8h 2 P   and   T > 0 . (16)

Formulation of the Problem. Let the thermodynamic system be described by a constitutive equation of the
form (6), which is linear in both arguments. It can be shown that in the state space determined above the general so-
lution of such an equation can be represented as
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σ^  (α, f ) = Eα + ∫ 
0

∞

R (s) f (s) ds , (17)

where E: S → S is a linear operator, which must be symmetric (E = E×) in accordance with thermodynamic condition
(15), and R: R+ → L(S) is the relaxation function, for which, according to (16), the condition

∫ 
0

T

 ∫ 
0

t

s(R (t − s) h (s)), h (t)t dsdt ≥ 0 ,   8h 2 P   and   T > 0 (18)

must be fulfilled. Furthermore, for the condition of stability of equilibrium states to be fulfilled we set E ≥ 0 (here
and below, the sign of inequality in relation to the operator must be understood as sα, Eαt ≥ 0, and 8α 2 S).

The action performed by such a system in the process h of duration T from the state Λ = 


α, f


, with account

for (11) and (17) and the symmetry of E, is represented as

a (α, f, h) = ∫ 
0

T

sσ^ (Ph
tΛ), h (t)t dt =

= − 
1
2

 sα, Eαt + 
1
2

 sα + h
i
 (T), E (α + h

i
 (T))t + ∫ 

0

T

∫ 
0

t

s(R (s) ph
t
f (s)), h (t)t dsdt . (19)

We symmetrically complete the definition of the relaxation function R prescribed on the positive semiaxis on
the negative semiaxis, i.e., we introduce the function R

~
 as follows:

R
~

 (s) = 











R (s) ,         s 2 [0, ∞) ;

R
×
 (− s) ,     s 2 (− ∞, 0) .

(20)

It has been allowed for in relation (20) that (18) yields the symmetry of R(0), i.e., R(0) = R×(0), as has been shown
in [14]. Using this definition and relations (8) and (10), we can transform expression (19) to the form

a (α, f, h) = sα, Eh
i
 (s)t + 

1
2

 sh
i
 (T), Eh

i
 (T)t +

+ ∫ 
0

T

 ∫ 
0

∞

sh (t), R (s + t) f (s)t dsdt + 
1
2

 ∫ 
0

T

 ∫s
0

T

h (t), R
~

 (t − s) h (s)t dsdt . (21)

Then the problem on minimization of the thermodynamic action performed from a certain nonequilibrium state on a
finite time interval T is reduced to the classical problem of finding the minimum of the functional (21) on the set of
all processes of duration T. Computing the functional derivative with respect to h (at a fixed T) for this functional and
equating it to zero, we arrive at the necessary condition of its minimum

Eα + ∫ 
0

∞

R (t + s) f (s) ds + ∫ 
0

T

(R~ (t − s) + E) h (s) ds = 0 ,   8t 2 [0, T] . (22)

Solving Eq. (22) for h, we can find the optimum process and subsequently calculate the minimum action from it.
We consider the formulated problem for a particular case of a relaxation system [4, 7] (this case is of practi-

cal importance). For these systems the relaxation function is represented as follows:
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R (t) = ∑ 

i=1

N

Ri exp (− λit) , (23)

where Ri = Ri
× ≥ 0, 8i 2 1, 2, ... N


, and λN > λN−1 > ... > λ1 > 0. The overwhelming majority of continuum models

with a memory or with internal state variables and electric RC or LC circuits, mechanical elasto-damped systems, and
others are described by such systems. The thermodynamic constraint (18) for them holds true even in a stronger for-
mulation of the strict inequality (see [7]). Also, these systems differ in that the family of nonequilibrium thermody-
namic potentials for them contains the central potential [4] distinguished by its special properties and corresponding to
the standard potential in the cases where it can be constructed. Thermodynamic systems with a memory and relaxation
functions of the form (23) can be represented as systems with internal state variables [4], where the number of expo-
nents N in this case corresponds to the number of internal state variables. We consider a one-dimensional case (one-
dimensional configuration space S) for which σ and ε as well as Ri and E in (22) are scalars. For an infinite time
interval and E = 0, such a problem has been solved in [8] in terms of the maximum work which can be done by a
viscoelastic body from an arbitrary nonequilibrium state (maximum recoverable work). For such a mechanical system
the work done by the system in an arbitrary process is expressed as the integral (21) with a minus sign; therefore, the
problem on the minimum action corresponds to the problem on the maximum work. Since the latter is attained in this
case in the process performed in an infinite time interval, the average power will be equal to zero; therefore, the for-
mulation and solution of an analogous problem for a finite time interval would make it possible to provide a more
realistic evaluation of the limiting power characteristics of such systems.

Finding the Optimum Process. We will seek the solution of Eq. (22) with the relaxation function (17) for
the one-dimensional system in the following form:

h0 (t) = C + A0δ
+
 (t) + B0δ

−
 (t − T) + ∑ 

j=1

N−1

Aj exp (− µjt) + ∑ 

j=1

N−1

Bj exp (µjt) , (24)

where C, A0, B0, Aj, Bj, and µj (j = 1, 2, ..., N − 1) are the undetermined constants and δ+ and δ− are the Dirac delta

functions determined here so that δ+(s) = 0 and δ−(s) = 0 for t ≠ 0 and ∫ 
−0

∞

δ+(s)ds = 1 and  ∫ 
−∞

+0

δ−(s)ds = 1. Introducing

the notation

Ki = ∫ 
0

∞

exp (− λis) f (s) ds ,   i = 1, 2, ..., N ;   K0 = − α (25)

and substituting the selected form of the solution (24) and the scalar relaxation function (23) into (22), after certain
transformations we obtain

EK0 − ∑ 

i=1

N

RiKi exp (− λi) = E 






CT + A0 + B0 + ∑ 

j=1

N−1




Aj

µj
 (1 − exp (− µT)) + 

Bj

µj
 (exp (µT) − 1)











 +

+ 2C ∑ 

i=1

N
Ri

λi
 + ∑ 

i=1

N

Ri exp (− λit) 






− 

C

λi
 + A0 −  ∑ 

j=1

N−1




Aj

λi − µj
 + 

Bj

λi + µj











 +

+ ∑ 

i=1

N

Ri exp (λit) exp (− λiT) 






− 

C

λi
 + B0 − ∑ 

j=1

N−1




Aj exp (− µT)
λi + µj

 + 
Bj exp (µT)
λi − µj











 +
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+ 2 ∑ 

j=1

N−1

Aj exp (− µjt) ∑ 

i=1

N
Riλi

λi
2
 − µj

2 + 2 ∑ 

j=1

N−1

Bj exp (µjt) ∑ 

i=1

N
Riλi

λi
2
 − µj

2 . (26)

We note that the variables Ki (i = 1, 2, ..., N) introduced in (25) correspond to the internal state variables [4, 11].
Taking into account that the parameters µi are arbitrary, let us assume that the condition

  ∑ 

i=1

N
Riλi

λi
2
 − µj

2 = 0   for   j = 1, 2, ..., N − 1 (27)

is fulfilled in (26), i.e., that µj
2 are N − 1 roots of the equation

F (x) B ∑ 

i=1

N
Riλi

λi
2
 − x

 = 0 . (28)

We easily assure ourselves that Eq. (28) has N − 1 real roots xf, since the function F is continuous on each time in-
terval λf

2 ≤ x ≤ λj+1
2  (j = 1, 2, ..., N − 1) and varies from +∞ to −∞ and consequently must have a root within the in-

terval. Hence it is clear that

λj
2
 < xj < λj+1

2
 ,   j = 1, 2, ..., N − 1 . (29)

Thus, (27) will be fulfilled if we set

µi = + √xj  ,   j = 1, 2, ..., N − 1 (30)

in (24). Then the last two terms in (26) disappear, and for this relation to hold true it only remains for us to assume
that the coefficients of the linearly independent functions 1, exp (−λ1t), exp (−λ2t), ..., exp (−λNt), exp (λ1t), exp
(λ2t), ..., exp (λNt) are equal to zero. As a result, we arrive at the following linear system of 2N + 1 equations for
2N + 1 unknown constants C, Aj, and Bj, (j = 0, 1, 2, ..., N − 1):

C 






T + 

2

E
 ∑ 

i=1

N
Ri

λi







 + A0 + B0 + ∑ 

j=1

N−1
Aj

µj
 (1 − exp (− µjT)) + ∑ 

j=1

N−1
Bj

µj
 (exp (µjT) − 1) = K0 ,

C

λi
 − A0 + ∑ 

j=1

N−1
Aj

λi − µj
 + ∑ 

j=1

N−1
Bj

λi + µj
 = Ki ,   j = 1, 2, ..., N ; (31)

C

λi
 − B0 + ∑ 

j=1

N−1
Aj exp (− µjT)

λi + µj
 + ∑ 

j=1

N−1
Bj exp (µjT)

λi − µj
 = 0 ,   j = 1, 2, ..., N .

It is easily shown that system (31) has a unique solution. Indeed, if the assumed optimum process (24) is substituted
into the expression for the thermodynamic action (21), this will result in a polynomial of second order in parameters
C, Aj, and Bj. The quadratic terms of this polynomial are obtained from the second and fourth terms on the right-hand
side of (21). However the last of these terms is always strictly positive by virtue of the thermodynamic requirements
(18) fulfilled for relaxing systems in the strong form of a strict inequality, and the first term is either strictly positive
(for  E > 0) or disappears (for E = 0; in this case one also sets C = 0). Thus, the leading terms of this polynomial
always form a positive-definite quadratic form whose coefficients matrix can be reduced, using (27), to a form coinci-
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dent with the matrix of system (31). A necessary condition of the positive-definiteness of the quadratic form is the
strict positiveness of the determinant of its matrix; hence the matrix of system (31) is not degenerate and, conse-
quently, the system has a unique solution.

Thus, determining the constants µi from (28) and (30) and the constants C, Aj, and Bj from (31), we find the
minimum thermodynamic action by substitution of the solution (24) together with (23) into (21). To simplify compu-
tations we can use Eq. (22). Next we interpret the results in terms of the maximum recoverable work for viscoelastic
systems (for example, continua). If σ and ε mean the mechanical stress (force) and the relative deformation, then the
work done by the system, as has been indicated above, will be expressed as the action (21) taken with an opposite
sign; therefore, the above-formulated problem on the minimum thermal action corresponds to the problem on the maxi-
mum recoverable work. Carrying out the substitutions indicated above, we obtain the following expression for the
maximum work recoverable during the time T for the relaxing system with the relaxation function (23):

WmT (T) = 
1

2
 EK0

2
 − K0C ∑ 

i=1

N
Ri

λi
 −

− 
1

2
 ∑ 

i=1

N

RiKi 






A0 + B0 exp (− λiT) + ∑ 

j=1

N−1



Aj 

1 − exp (− (λi + µj) T)
λi + µj

 + Bj 
1 − exp (− (λi − µj) T)

λi − µj











 . (32)

The optimum process in which this maximum work is attained is described by relation (24) with the constants deter-
mined from (27) and (31). Passing to the limit T → ∞ in (31) and (32), we arrive at relations generalizing the results
of [8], where the case E = 0 has been considered, and expressing the maximum recoverable work for this system
without constraints on the duration of the process in which it is recovered:

Wm = 
1

2
 EK0

2
 − 

1

2
 ∑ 

i=1

N

RiKi 






A
~

0 + ∑ 

j=1

N−1
A
~

j

λi + µj







 ,   j = 0, 1, 2, ..., N − 1 , (33)

where A
~

j is the solution of the system

− A0 + ∑ 

j=1

N−1
Aj

λi − µj
 = Ki ,   i = 1, 2, ..., N . (34)

The optimum process in which the maximum work (33) is recovered is a composition (successive implementation) of
two processes of infinite duration:

h (t) = A
~

0δ
+
 (t) + ∑ 

j=1

N−1

A
~

j exp (− µjt) (35)

and

h1 (t) = 






K0 − A

~
0 − ∑ 

j=1

N−1
A
~

j

µi







 

1
T1

 ,   t 2 [0, T1] ,   T1 → ∞ . (36)

The analytical expression obtained in [8] for the constants A
~

j disregards the component (36) of the optimum process,
since the case E = 0 has been considered there.

Discussion of the Results. We note that the quantities presented in (32) and (33) are the state functions for
the thermodynamic system (22) and (23), since the parameters Ki in (32) and (33) and (31) and (34) are related to the
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state parameters 


α, f


 by relations (25). The state function (33) is equivalent by definition to the so-called minimum

nonequilibrium thermodynamic potential defined in [9, 10]. It is of interest to compare them to another state function
that is interpreted as free energy for viscoelastic systems and is the central thermodynamic potential for generalized
thermodynamic systems [9, 10]. It is calculated as the elastic energy of a viscoelastic system subjected to deformation,
which has failed to relax. For example, for a viscoelastic mechanical system of springs and viscous dampers, this is
the total potential energy of the springs, for an electric RC circuit, this is the energy of the capacitors, etc. For the
case considered, this function is expressed as [12]

W = 
1
2

 EK0
2
 + 

1
2

 ∑ 

i=1

N

RiKi
2
 . (37)

In numerical analysis of the results obtained, it is also of interest to compare the work WmT recovered over the period
T in the process optimum for this time interval and the work WT done over the same period in the process optimum
in the absence of constraints on its duration. To calculate the latter we must substitute the reduction by the interval [0,
T] of the composition of the processes (35) and (36) into (21) with account for (23) and for the opposite signs of the
work and the action. Since the component (36) is "cut out" in reduction, we use only (35) in the computations to give

WT (T) = 
1

2
 EK0

2
 − 

1

2
 E 







K0 − A

~
0 − ∑ 

j=1

N−1
A
~

j

µi








2

 +

+ 
1

2
 A
~

0
2
 ∑ 

i=1

N

Ri − ∑ 

i=1

N

RiKi ∑ 

j=1

N−1
A
~

j (1 − exp (− (λi + µj) T))
λi + µj

 + A
~

0 ∑ 

i=1

N

 ∑ 

j=1

N−1
RiA

~
j

λi + µj
 exp (− (λi + µj)) −

− ∑ 

i=1

N

 ∑ 

j=1

N−1

 ∑ 

k=1

N−1
RiA

~
jA
~

k

(λi + µj) (µj + µk)
 



1 − 

(λi + µj) exp (− (µj + µk) T) (µj + µk) exp (− (λi + µj) T)
λi − µk




 . (38)

A numerical analysis of the results obtained will be carried out for a system with a three-dimensional space
of internal variables, i.e., for N = 3. We consider the system with the following parameters (the parameters are pre-
scribed in dimensionless form; if we are dealing with a specific physical system, it is assumed that all the variables
are appropriately made dimensionless): λ1 = 0.5, λ2 = 2, λ3 = 8, R1 = 1.5, R2 = 3, R3 = 9, and E = 0. The state
parameters in the space of internal variables are the variables Ki (i = 1, 2, and 3) determined in (25). Since the system
is linear, multiplying the three-dimensional vector Ki by an arbitrary scalar leads just to a scaling change in the result.
Therefore, to eliminate these trivial variations of state from consideration we set

K1
2
 + K2

2
 + K3

2
 = 1 (39)

and will prescribe the state as a function of two parameters ω and ϕ as follows:

K1 = cos ω ,   K2 = sin ω sin ϕ ,   K3 = sin ω cos ϕ . (40)

It is clear that relation (39) holds true, and the parameters ω and ϕ are the azimuth and meridian angles for the end
of the vector Ki on a unit sphere. Figure 1 shows, for different states, the free energy W (relation (37), curve 1), the
maximum recoverable work Wm (relation (33), curve 2), and the instantaneous initial work in the optimum process
recovering the maximum work WT(0) (relation (38) at T = 0, curve 3). The latter quantity describes the contribution
of the work done in instantaneous initial deformation of the system to Wm (delta function in (35)). In constructing
all the dependences, the coefficients C, Aj, Bj, and A

~
j were determined numerically as the solutions of the corre-

sponding systems (31) and (34). The system’s parameter E (having the meaning of the elastic modulus in our case)
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was set to be equal to zero and was not varied, since the terms determined by it introduce a trivial addition of the
potential energy into W.

The calculation results show that for most states, the maximum recoverable work is much smaller than the
free energy (see Fig. 1), i.e., most of the stored free energy cannot, in principle, be recovered from the system and
will inevitably be scattered as heat when the work is done by the system.

In most cases, a considerable part of the work recovered (and sometimes the entire work) is done by initial
instantaneous deformation in the optimum process (Fig. 1, curve 3). Of interest is the fact that, in many states, the in-
stantaneous initial work in the optimum process is negative, i.e., to recover the maximum work from the system it is
necessary at first to do work over the system in the optimum process (see, for example, Fig. 1a (ϕ = 2–3), Fig. 1b
(ϕ = 1.8–2.3), and Fig. 1c (ϕ = 5–5.9)). For a single found state in which the entire free energy can be recovered
from the system (Fig. 1b, ϕ = 0.78 and ω = 0.99), the entire work is done in instantaneous initial deformation much
as in systems with a one-dimensional space of internal states [8]. The values of the parameters ω and ϕ for this state
correspond to the vector of the internal variables Ki; with three identical components and in instantaneous deformation
from it the system acts as a one-dimensional one. We note that the curve of the maximum work recoverable in a fi-
nite time interval WmT is always located between curves 2 and 3 or curve 2 and the abscissa in Fig. 1. This follows
from the definition of this work; at T → 0, it is either smaller than the zero one (absence of deformation) or no
smaller than WT(0), if the latter is positive, but when T → ∞ the indicated work tends to Wm by definition.

If the system which is initially in a nonequilibrium state is left at rest, its internal state will relax to an equi-
librium one; the free energy and the maximum recoverable work will accordingly decrease. Figure 2 shows the relaxa-
tion of these quantities with time from different nonequilibrium states. These data have been calculated according to
relations (33), (34), and (37) with allowance for the fact that the state variables determined by relation (25) evolve for
the system at rest with time as follows:

Fig. 1. Force energy (1), maximum recoverable work (2), and instantaneous in-
itial work in the optimum process (3) for different states for E = 0: a) ω =
0.3; b) 0.99; c) 2.7.

Fig. 2. Relaxation of the free energy (1–4) and the maximum recoverable
work (5–8) from different nonequilibrium states: 1 and 5) ϕ = 3 and ω =
0.15; 2 and 6) 4.8 and 0.55; 3 and 7) 2.7 and 0.55; 4 and 8) 0.75 and 0.99.

1055



Ki (t) = Ki
0
 exp (− λit) , (41)

where Ki
0 are the state parameters at the initial instant of time. This follows from (25) with allowance for the fact that

the initial history f(s) in relaxation is transformed to a one-parameter (parameter t) family of the histories pu
t f(s), deter-

mined by relation (10), where u(s) B 0 is a stationary process. As is clear from Fig. 2, the free energy mainly relaxes
accordingly to an exponent-like profile, whereas the relaxation profiles of the maximum recoverable work are much
more diverse and show an interesting feature in some cases: they have a "shelf," i.e., a time interval during which this
quantity is virtually constant (Fig. 2, curves 5 and 8). Such a feature can manifest itself, for example, in the gasdy-
namics of a relaxing gas; therefore, the use of the concept of a minimum thermodynamic potential (corresponding to
the maximum recoverable work in this case) would make it possible to more purposefully optimize nonequilibrium
gasdynamic processes.

The maximum recoverable work is done by the system in the optimum process whose duration is unlimited.
If we consider the work done in this process in a finite time, it will certainly be smaller and even negative in most
cases. Conversely, the work done in the process, which is optimized for recovery of the maximum work in a finite
time, is always positive and exceeds that mentioned above. The time dependences of these two works calculated re-
spectively from formulas (38) and (32) are presented in Fig. 3 whose data confirm the foregoing. Thus, curves 4 show
that, in the process optimized for an infinite time interval, work significantly differing from that for the process opti-
mized for a finite time is done at short times. To the instant of time t = 0.08, they differ in sign; therefore, by the
instant t = 0.08, the zero work is done in the first process, whereas the positive work equal to approximately half the
maximum recoverable work is done in the second process. For the initial states in which a considerable part of the
maximum recoverable work is done in instantaneous initial deformation, this difference is not so significant.

Figure 4 shows the optimum processes in which the maximum recoverable work is produced for finite and in-
finite time intervals. These plots represent the time behavior of deformation in such processes. Since the process h has
been determined as the deformation rate, the above data have been plotted as the time integrals of the functions (24)
and (35). The duration of the time interval for which this process is optimum is determined on the plot by the instants
of time from which the deformation becomes constant. The curve for which there is no portion with a fixed deforma-
tion corresponds to the optimum process on an infinite time interval. As follows from the results presented, the main
difference in the optimum processes for the finite and infinite intervals is the presence of the second instantaneous de-
formation at the end of the process. Although the smooth parts of the processes do not coincide, they differ only
slightly. In certain initial states (Fig. 4c), the direction of the instantaneous deformation closing the process changes
with growth in the duration of the time interval. In this case, we have such a duration of the interval for which there
is no instantaneous final deformation (process optimum for the interval T = 0.5 in Fig. 4c). In the case of the initial
states the optimum processes for which are presented in Fig. 4a and c, there are data on the dynamics of recovery of
work in processes finite and infinite with time; these data are presented in Fig. 3 (curves 2 and 4). Their analysis
shows that even for very short finite intervals the work done in the processes is nearly the same, although the form

Fig. 3. Time dependence of the work done during the time t in the process op-
timum for an infinite time (solid curve) and in the process optimum for the
time interval t (dashed curve) for different initial states: 1) ϕ = 3 and ω = 0.5;
2) 5.3 and 0.99; 3) 1.5 and 0.3; 4) 5.2 and 2.
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of them differs quite significantly for the finite and infinite time intervals. Thus, according to the data presented in
Fig. 4c and Fig. 3 (curves 2), even for the duration of the interval T = 0.2, the works done over this period in the
process optimized on the finite interval mentioned and in the process optimized on an infinite interval differ by no
more than 3%, whereas for T = 0.5 they virtually coincide, although the curves of the corresponding processes differ
quite significantly.

In closing, we note that the given results are also the solution of an analogous problem for a system where,
instead of the constitutive equation with a memory (17) (with the relaxation function (23)), one prescribes equations
for thermodynamic systems with internal state variables [4] of the form

σ^  (α, x) = Eα + Cx , (42)

x
.
 (t) = Ax (t) + Bε

.
 (t) , (43)

where x is the vector of internal state variables (this is the set Ki in the case considered above), which belongs to
the vector space of internal variables X, and A, B, and C are the linear operators: A 2 L(X), B 2 L(S, X), and
C 2 L(X, S); they are such that the relaxation function (17) can be represented by these operators as

R (τ) = C exp (Aτ) B . (44)

In such a representation, this problem can find application to a wider class of physical systems.
This work was carried out with financial support from the Belarusian Foundation for Basic Research, project

F99-R153.

NOTATION

a, thermodynamic action; A
~

j, solution of system (34) (j = 0, 1, 2, ..., N − 1); A0, B0, Aj, Bj, µj, and C, unde-
termined constants in the representation (24) for the solution of Eq. (22) (j = 1, 2, ..., N − 1); A, B, and C, linear op-
erators in the representation (42) and (43) of the system with internal variables; E, operator prescribing the linear
equilibrium part of a generalized force; G, state space; h, process of duration T; H, Hilbert history space; Ki, parame-
ters determined in (25); Ph

T, transformation in the state space associated with the process h; ph
T, transformation in the

history space associated with the process h; P, set of processes; R, relaxation function; Rj, operator coefficients pre-
scribing the relaxation function (23); R and R+, sets of real and real nonnegative numbers respectively; S, finite-di-
mensional Euclidean space of the elements α, β, γ, ...; t and t0, time and instant of time; W, free energy for the
relaxing system; WmT, maximum work recoverable over the period T for the relaxing system; Wm, maximum work re-
coverable over an arbitrary period for the relaxing system; WT, work done during the time T in the process optimum
for the case of the absence of constraints on its duration; xj, roots of Eq. (28); x, vector of internal state variables;

Fig. 4. Optimum processes realizing the maximum recoverable work for finite
time intervals (1–4) or an infinite (5) interval (the duration of the interval is
determined by the instant of time from which deformation becomes constant):
a) ϕ = 5.2 and ω = 2; b) 3.5 and 0.5; c) 5.3 and 0.99.
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γ(s), influence function; δ+ and δ−, Dirac delta functions; ε, configuration trajectory of the system; εt, configuration
history of the system to the instant of time t; ε

. t, differential configuration history of the system to the instant of time
t; Λ, state; Λt, state of the system at the instant t; σ^ , constitutive functional of generalized forces; σε, trajectory of
generalized forces; ξ and δ, positive parameters; σ0, equilibrium generalized force; σ^  ′, nonequilibrium part of a gener-
alized force; ψ0, equilibrium thermodynamic potential; λi, inverse times of relaxation in (23); ω and ϕ, parameters in
the representation (40) for states. Subscripts: m, maximum; 0, equilibrium.
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